Job Shop Modeling Webinar August 28, 2018

Modeling High Mix processes in Process Simulator

Instructor Info:
Bruce Gladwin, PMP, 6бBB
SVP, Commercial Products
Office: 801.223.4639
bgladwin@promodel.com
astrictor in

Pracess

s i mula a o r

```
Professional
```

```
Professional
```


Agenda for this Webinar

- Explore characteristics of "Job Shop" production systems
- Methods for modeling job shop-like processes in Process Simulator.
- Examples
- Intuitive or "Brut Force" method for modeling a job shop.
- Generic template you can use for any high mix batch processing model
- Specific example of a job shop-like model in the food processing industry

Characteristics of Job Shop Production

- Job shops represent production systems that produce a high mix of products that can be made using the machines and equipment available on the shop floor.
- Even large flow manufacturing facilities may have their own job shops for making special tooling that is needed on the flow lines.
- Job shops typically run batches of products through their work centers due to the long setup times required to perform each operation.
- Job shops typically use common or generic equipment rather than specialized machines that excel in performing a single operation.

ProModel ${ }^{\circ}$

A Typical Job Shop Environment

Example 1: Job Shop Model Demo

This model represents the "brut force" method of job shop modeling.

It contains:

- 2 Product Types
- 4 Work Centers

You can see that with only 2 product types and 4 work centers the Routings are getting messy. If you tried to do this with 20 product types it would likely be impractical.

ProModel ${ }^{\circ}$

Typical Job Shop Environment

Example 2:

This model provides a general template for modeling job shops of any size.

As built it contains:

- 100 Product Types
- 25 Process Stations
- 50 Tool Types
- 5 Labor Teams

It can be easily modified To fit various job shop modeling situations.

Tool Crib
Inal可気
 문 뭉

Labor Pools

 4remerta

ProModel ${ }^{\circ}$

Model Constructs

- Excel Tables
- Routings
- Labor Types
- Tool Types
- Processing times
- Arrays
- Attributes
- Macros
- Variables
- Flexible Route
- Subroutines

Master Worksheet

- The Master Worksheet contains " n " rows for each product type. The data elements are automatically copied to other worksheets that contain just one type of data for each product at each process step.
- The Routings worksheet contains only the routing data for each product
- The Labor worksheet contains only the Labor used at each step in the process
- The Tool worksheet contains only the Tool used for each product at each step
- The Op_Time worksheet contains only the operation times at each step

The Routings Worksheet

- Routing data (activity names) for each step in the process is contained on a single row for each product type.
- You can have multiple routing operations by modifying the Master!

ProModel

Better Decisions-Faster

Using Index Numbers for Indirect Reference

- Process Simulator allows you to indirectly specify an Entity Name, an Activity name or a Resource name by using the Index Number of that Entity, Activity or Resource.
- To see the Index Number of an object, look in the Object Explorer and click on the \# symbol.

Using vLookup to generate the Index \#'s

- Next, use Excel's vLookup function to create an index number table from the data with the Routing, Labor and Tooling specifications.

Activity List	vLookup
Wk_Sn_1	1
Wk_Sn_2	2
Wk_Stn_3	3
Wk_Stn_4	4
Wk_Stn_5	5
Wk_Stn_6	6
Wk_Stn_7	7
Wk_t_-	8
Wk_Stn_9	9
Wk_Stn_10	10
Wk_Stn_11	11
Wk_Stn_12	12
Wk_Stn_13	13
Wk_Stn_14	14
Wk_Stn_15	15
Wk_Stn_16	16
Wk_Stn_17	17
Wk_Stn_18	18
Wk_Sn_19	19
Wk_Sn_20	20

The Labor Worksheet

- Labor used for each step in the process is contained on a single row for each product type.
- You could specify number of labor units by modifying the Master!

ProModel ${ }^{\circ}$

The Tools Worksheet

- A Tool or any other type of resource needed for each step in the process is contained on a single row for each product type.
- You could specify multiple tools or units by modifying the Master!

The Op_Times Worksheet

- Time spent at each activity is specified in this worksheet. This time includes the use of the labor unit and the activity itself.
- You could separate Operator \& Run times by modifying the Master!

Attributes - hold "active" info for each Entity

- a_Product = Product Type (e.g. 1 = product type 1, 2 = type 2)
- a_CycleStart = the entity's arrival time to system
- a_BatchSize = the batch size that is represented by the entity
- a_Proc_Step = the entity's current step in the process
- a_Destination = the next Activity where the entity will be sent
- a_Labor = the resource index number of the specified labor type
- a_Tool = the resource index number of the specified tool type
- a_OpTime = the operation time that will be taken at the current step. This includes the use of any Labor and Tool elements that are specified.

ProModel ${ }^{\circ}$

Arrays

- Four arrays are used in the template
- y_Routings reads the routing data from the Routings worksheet
- y_Labor reads the labor resource data from the Labor worksheet
- y_Tools reads the tool resource data from the Tools worksheet
- y_OpTimes reads the operation time data from the Op_Times worksheet

Macros

- This template uses Macros for global substitution parameters
- m_MoveTime is a generic move time for entities moving from any Activity to any other Activity.
- m_LaborAvail is a general resource availability setting that is used to specify a PF\&D (personal fatigue $\&$ delay) factor on each labor type. You could add macros for each Labor type if you need specific factors for each Labor type.

Variables

- This template uses Variables to track Work in Process (WIP) and Cycle Time of each entity from arrival to exit.
- You can add any variables that you want to track whatever type of information you need to track. Or, use them for decision making in your subroutine.

Subroutines

- This template uses a Subroutine to apply common processing logic to each entity at each step in the process.
- Upon arrival at each Activity the Subroutine logic performs the following steps...
- Increment the Process Step attribute
- Set the Labor, Tooling and Operation Time attributes
- If a Tool is required, capture that resource
- If a Labor resource is required, use that resource for the Operation time, otherwise remain at the Activity for the operation time (without a resource)
- Free all resources used
- If the process step is less than 25 then set the Destination attribute to the next Activity.

ProModel ${ }^{\circ}$

Example 3:

This model is a specific example of using the Job Shop Template to model a high mix, high volume batch production system in the food processing industry.

The Master worksheet was modified to meet the specific needs of this system.

ProModel

Better Decisions-Faster

Master Worksheet for Food Processing Demo

- This Master Worksheet contains 5 rows for each product type. The additional data element specifies the number of labor units needed for each product at each process step.
- The Routings worksheet contains only the routing data for each product
- The Labor has two elements... Type \& Quantity (number of units) at each step
- There are two time fields in this model... one for the time with the labor unit(s) and the other for the automated machine time (e.g. time in the oven).

FINISHED

- Thanks for attending this "Job Shop Modeling with Process Simulator" Webinar! We hope it was helpful.
- Remember, help is only an email or phone call away.
- Good luck and happy modeling!
Technical Support
$888-776-6633$
support@promodel.com
6 am -6 pm M-F, Mountain Time

